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Electromagnetic Diffraction by a Planar
Atray of Circular Disks®

W. H. EGGIMANNT anxp R. E. COLLINYt, SENIOR MEMBER, IRE

Summary—The diffraction of a plane electromagnetic wave by a
planar rectangular array of perfectly conducting circular disks is
considered. The diffracted field is calculated from the induced elec-
tric and magnetic dipole moments and higher-order multipole
moments. Static and dynamic interactions between the induced
dipole moments are being considered, first by using a plane-wave
approximation for the dipole fields (for cases where the separation
of the disks is large compared with the wavelength) and then by cal-
culating the actual fields at each disk. The formulas are applied to
calculate the input susceptance of a disk-loaded rectangular wave-
guide, Satisfactory agreement with experimental results is obtained.

INTRODUCTION
]:[N A RECENT PAPER! the electromagnetic dif-

fraction by a perfectly conducting circular disk was
calculated. The induced surface current density
was obtained as a power series in

(ka) (B = 2x/N = wave number, ¢ = disk radius).

These results are now used to calculate the diffraction
by a planar rectangular array of disks. Problems of this
sort are important in the studies of artificial dielectrics
where the molecular dipoles of real dielectrics are re-
placed by conductors distributed regularly or at ran-
dom in a supporting medium. For many cases good ap-
proximate solutions have been found, usually for con-
ductors with dimensions that are very small compared
to the wavelength or for some very simple geometrical
configurations. The case of an array of disks has been
the object of early investigations. In a first approxima-
tion the disks are replaced by the induced electric and
magnetic dipole moments which Bethe obtained during
his studies of the diffraction by small holes.? Later the
so-called static interaction, where phase differences be-
tween the oscillating dipole are neglected, was taken into
account.

Here the formalism of the above-mentioned paper! is
used to calculate the effect of higher order multipole
moments and the dynamic interaction between the
induced dipole moments of an array of circular disks,
where it is recognized that the interaction fields are
dipole fields. The mathematical development has to be
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rather sketchy. For more details the reader is referred
to the original reports.’:

Itisdesirable to relate the theoretical results to quanti-
ties which can be easily checked experimentally. As for
any approximation, our results hold only for certain
ranges of the parameters, in our case for small disks
where ka <1. Free space problems are usually not very
amenable to experimental checks. It is therefore pro-
posed to investigate a waveguide configuration which,
by suitable arrangement, will turn out to be closely re-
lated to the free space problem.’ This will be shown in
the following section.

SHUNT SUSCEPTANCE OF A Disk-LoapED WAVEGUIDE

Consider an arrangement of disks in a transverse
plane of a rectangular waveguide as shown in Fig. 1.
The disks are positioned such that their multiple images
with respect to the guide walls form a planar regular
rectangular array with spacings ¢ and d. Similarly the
TE;, mode corresponds to two symmetrical plane waves
incident at angles ;= +sin~! \/2g and polarized per-
pendicular to the plane of incidence as seen in [Fig. 2.
The reflected field at large distances is a TE;; mode
only, traveling in the negative z direction, if the size of
the guide can be chosen such that all other modes are
cut off. That means that in the free space problem the
disk array represents a perfect partially transparent
reflector.

The reflected field can be calculated from the current
distribution on the disks. The normalized fields for the
TE 1, mode are

1/2
e = — jkZ |:——:| cos (k.x)a
10 J ¢ jg]lkZOPm ( ) v
2 1/2

hig = Ty — k.x)a, 1

10 10 [jghkzor‘m:l cos (k.x)a (1)

) 1/2
h,j0= — Fk; |:~———:] sin (k.x)a,
]gthoI‘m
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Fig. 1—Planar array of circular disks in a rectangular
waveguide and their multiple images.

Fig. 2—Representation of the TE;; mode in a rectangular waveguide
by two plane waves. The incident angle is given by 8, =sin"* N/2g.

where

T
4
We have further the orthogonality relation

kx = ) PIO =jﬁ10 = (k]}2 - k2)1/2.

fewxhzlo‘ds =1 (2)
S
where the integration is over the cross section .S of the

waveguide.
The normalized transverse field moving in the nega-
tive z direction is

E\y = ejpel?

3
Hy~ = — hye™” ®
and in the positive z direction
E\ it = e w7
4

H10+ = hloe—-l‘mz_
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The scattered dominant wave is
E* = bpoEw™
Hip* = bioHy™

where by, is the scattering coefficient. by can be easily
found by using the Lorentz reciprocity principle.®

)

1

bio = ——f E, - Jdv. (6)
2Jy

The integral is taken over the volume V' containing

the induced current density.
A similar result holds for b, of the nth scattered mode.
Expansion of the mode E,* about the origin gives

AE,* IE,*

E (v, y) = E*F(0) + +y
ox dy
v 1 [ O2E,* 4 aZE,nL+ oaﬂEﬁ] R
| g2 ¥ 2 e
2 9x? Y 9xdy ’ ay? ]
This leads to
—2b, = E,*- deV
v
JE+ IE*
+ [ -fx]dV—l————- fy]dV]
dx e dy v
1 [aﬁE,ﬁ f °]dV—|—262En+ f 7av
2 dx? v dxdy v %
9’E,*
+ = ‘fygde:l+"' (8)
6y2 v

In the following we consider the relation

fVV-(W)dV = fv(¢V'J+ J-Ve)av = quSJ-dS =0(9)

which holds if the integration is taken over the total cur-
rent distribution, because the component of J normal
to the surface element dS must vanish. Hence

fV]'VqﬁdV = ——qubV']dV =jwfv¢pedV (10)

where p, is the electric charge density.

First-Order Approximation

fV]dV =

axf V- JdV + ayf Vy-JdV
v v

[ax f xp.dV + a, f ypedV]jw = joP*  (11)
v v

where P! is by definition the electric dipole moment.
That gives

i

—2b,t = E,*- f JaV = juE,*- Pl (12)
v

6 R. E. Collin, “Field Theory of Guided Waves,” McGraw-Hill
Book Co., Inc., New York, N. Y.; 1960.
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where the superscript of the 4, denotes the first-order
approximation.

Second- and Third-Order Approximation

Using a similar procedure we find for the second- and
third-order approximation

— 20,2 = jow(—poH,* M + LVE,*:P?) (13)

—20,% = jo(—3uVH, "0 + IVEF PY)  (14)

where

1
= —2—f r X JdV = magnetic dipole moment
Q. = f 7,(r X J).dV = f ry(r, T — rer,)dV

1
P2 = f 7 #ipdV = -—f (ro, + 7, J)dV
juw
electric quadrupole moment (15)

1
P”ka = fﬁ?’ﬂ’kpedv = (fﬂ’]J}c + r]rk.fi + rknf,v)dV
Jw

electric octupole moment.
The tensor products are defined as follows:
— 3 I"E, n
VIE+H:Pr = . Po...

2,0k s =1 (97’]'67’19 e

(16)

and similarly for the magnetic moments. It has to be
pointed out that Q is not the magnetic quadrupole mo-
ment. The total scattering coefficient is now

—b, = Yjw[E- P — uH,*-M' + 3VE,*: P?
— IVvH Q0 + VES PR -] (A7)
Using the theory of images we have an infinite array
of disks and a plane wave incident at angles ¢, =90° and
;=sin" A/2g (Fig. 2). The total scattered field is found
by calculating and adding the contributions of the
electric and magnetic dipole moments and multipole
moments of all the disks.
The incident electric field has only a ¥ component
and is given by

Eqoym = Eg cos (kyx)e 102, (18)
From (5) we obtain for the total scattered field
Eyyt = Eyrot Z bio = e1oel10? Z bo (19

Disks Disks

where the summation is taken over all disks in the wave-
guide cross section and ¢4 is given in (1).

The reflection coefficient for the TE;, mode is then
found from

. Emf(Z = 0)

2
_ bro. (20
Eryi(z = 0) Eo 2, b (20)

Disks

Ry

ijoI: 2 ]1/
jg]lkZoPm
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Using (15) and Eggimann,' we calculate the multipole
moments. We obtain

21)

16
Pl = -; a’eglly cos (kxxm)Aezl1

8 1 8
Aot = [1 + 5 (k) — —sin® (k) = o~ Uw)“’]
16 g
le = — — a3 3 EO Sin (kxxm)Amzl (22)
3 JwMo

At = i[l — 3 (ka)? — —1— sin? 0,(ka)? —I—ji (ka){l
10 10 v

2
16
Pt = — — g Eqgsin (Buam) 4oys? (23)
3 oo
2
Aeyz“ = E (k(l)2
16
Qz:c = —3— dsj"'WOEO Cos (k-‘cxM)AmZI2 (24)

1 1
Ayt = 5 [(2 + sin?4,) + - (52 — 16sin%6; — 3 sin*4,)

2 N 20 3
YO (ka)]

16
_Pyug = ? (15(:0E0 cos (kxxm) A4 ey”?’

(25)
Aeoyrd® = i [1 + —1— (110 — 47 sin?8,) (ka)? -ji(ka)s:].
Y 5 210 97

Substituting the values for E;¢* and Hiot from (1)
and (4) and (21) to (25) in (17) and performing the
summation over the disks in the waveguide cross sec-
tion, we obtain for the reflection coefficient

. 8ka’ [A 1 <W>2A 1+1<7r)2A )
" T g LT T\ T T\ T

1 /mwe\? 1 /we\?
- _<_> A4mz:v2 - _") Aeyxxs]
3 \¢g 6 \¢g

= R 4+ jR"” form #1

(26)
(m = number of disks in the x direction)

where g/m and %/m have been replaced by ¢ and d, the

spacings between disks in the x and y directions, respec-

tively.
For the case of a single disk (26) becomes

. ,16k2a3<A 1 <7r>24 )
" T S\ T 2 ) T

1 (TI'C>2A 2
6 2 eyxx ) »

(27



1962 Eggimann and Collin: Electromagnetic Diffraction 531
In order to obtain a better approximation we now k o ks
consider the interactions between the disks, and the Crne = m{*ft (& W
disks and the guide walls. For the case of a free space !
array of dipoles this has been done by Collin and Eggi- 2mm 2mm
v . . — T+ ks — ks
mann.” They considered an incident plane wave T 2 ¢ c
iven b +— -
given by ' . 3;1 T T
Ei = Eye—J(kzx+ﬂloZ).ay (28)
where k,=Fk sin 8;, B10=Fk cos 0.. + 43 >y, cos (kanc) Ky(yame) (35)
The induced dipole moments have a phase delay in =t =t
the x direction given by k,c. Due to the symmetry of Cen = Cue (36)
the problem the induced electric dipole moment P has
. . . 1 1.2 2 k k*d?
a y component only. In this case the interaction field at ¢, = — — 3| —— + — (] — ) + -
the center of a disk is found to be 2rd \L &* 35“
2 int Py Ly 4w+k212'kdj|
int = Cee — CemZ ztot — 1n nssme—
v e + oM 2 R%d 2
(29)
. T2 dmar k%
H =t = CmeYO + CamM ;*°%, - Z I:Fm + T — +
0] C m—=1 C 2mr
The interaction constants C.., Com, Cme, and Cpn are d 1 ¢
obtained by summing the contributions to the fields - T 2_:1 T — I mr
due to all electric and magnetic dipole moments and
are given by — 4k2 37 3" cos (kanc) Ko(yame)
m=1 n=1
Coo = 4— > 3201 + jER) (nd)?
Tm=—s n=—w g—1hB—itzme +— Z Z cos (kxmc) = K1 (yme)
— (1 4+ jRR — E2R%) (mc)?] 25 (30) € m=1 n—1
w k% wka? 37
Con = - 4— S 3 e 61 Sl R e 0
T Mo N=-00
°° , where Ky and K, are modified Bessel functions of the
Cine 471_ Z Z (1 +]kR) —— ¢ iHRikame (32)  second kind.
1 . 2mmw 2 \
Coom = — — Z Zr (1 + jhR— kQRE)—e iER=jkzme (33) I, = + k) — &
4 Me=——0 N=--00 ¢
., (38)
where R=[(mc)?+ (nd)?] 2. yul = <ﬂ_ %?) — R
The prime on the summation sign indicates that the d
term m=n=0 is to be omitted
. . . = 0. = Euler’ tant.
These sums can be written in the form of a rapidly i 577 uler’s constant
converging series as follows: If the disks are sufficiently far apart, s.e., RR>>1, we

k*? 3kt
+ -
4 288
k* 4 > /1 1 ¢
l — J— — e ——
2Cd[ ( "k 7) z (I‘m+ T 7rm>:|
2
- — Z Z va? cos (kame) Ko(yme)

Td m—1 n—1

)
J 2¢d \ 2 (k? — k12
i1 /= k*d?
- —\ — R - — >:| (34)
wd® \ 4 6

7 R. E. Collin and W. H. Eggimann, “Dynamic interaction fields
in a two-dimensional lattice,” IRE TrRANS. ON MICROWAVE THEORY
AND TECHNIQUES, vol. MTT-9, pp. 110-115; March, 1961.

Cee -

! l:l 2 K In &d +
— n
Td? 2

can use a plane wave approximation and calculate the
induced electric and magnetic dipole moment due to
the interaction field. We obtain

Py — aeeoEyint _I_ aeinceoEymc
Mz — amHzint + amincHzinc‘

(39)
(40)
a.im¢ and an,imc are the electric and magnetic polariza-

bilities for the incident field and are obtained from 4.!
and 4,.!in (21) and (22).

ne 10 3[1+(8 ! "’e)(k Yk )3} (41)
o= g 5T S0 ) (Ra)?—j - a

8 1 8
o= Yy a® [1 T (2+sin?6,) (ka)?4j or (ka){l . (42)
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The electric and magnetic polarizabilities «, and an
for the interaction are obtained from (41) and (42) if we
set §,=90°, because the direction of propagation of the
interaction field is parallel to the plane of the disks,

Solving (29), (39) and (40) for the dipole moments
yields

(1 - amcmm)aeinceoEyinc + aeaminceoccmzﬂﬂzinc
B (1 — aeCee)(]- - amcmm) - aeamcemcme

(1 _ ange)“mincHzinc + aeincamcmeyoEyinc

M, = L)
(1 -_ aeCee)(l - OlmCmm) - aeamcemcme

(43)

v

In reality &,Ceom and «,Cre are small compared with
the other terms so that (43) and (44) reduce to

aeincéo

Py = ———— E, i 45
VT e, (45)
clminc
Mz —_ Hzinc. (46)
1 — nCun

This means we neglect the interaction between elec-
tric and magnetic dipoles. For small spacings between
the disks the plane wave approximation of the interac-
tion field may be insufficient. In this case it is necessary
to calculate the induced dipole moments on the disk
due to a dipole field. This can be done by using the gen-
eral expressions for the induced current distribution
given by (33) and (34) in Eggimann.! The interaction
can now be expressed by the equations

Pyd = Deepy
Mzd = Dmmmz

47
(48)
where

P, =induced electric dipole moment due to the total
field of all electric dipoles p,,

M =induced magnetic dipole moment due to the
total field of all magnetic dipoles ..

The new interaction constants are

4:(kd)5 0 o

D, = aC.+ 90 m=z_w ngw
{[_36 36 10 2 J
{[(kR)5 tant @Ry T GRY
[45+45j 18 3j]k3
GRT TGRS Ry Ry ) }
. e—g’kR—J'kxmc‘ (49)

2(]3 )5 © 0
YDy,

3 0 M=—0c0 N==00

Dym = amCom +

7 74 2 g
°{(k1a)5 tar: T R (kR)2}

. e—]'kR—jkxmc

(50)
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The summation terms represent corrections to the
plane wave approximation. For large 2R and ¢#0 they
are one order smaller than the leading terms «,C.. and
0 Crum. Their numerical computation is difficult because
they converge very slowly if ZR is not large. We can
use, however, the same method as was employed for the
evaluation of the interaction constants C,. and Cun.”
There, a Fourier transform was used to obtain a rapidly
convergent series for the field components, where only
the first terms had to be calculated. Using the foregoing
results, we finally obtain for the reflection coefficient
(m#=1)

. 8k2%a? Agyl m\?2 *’Zlm.z1
Ry=—j ()
3¢dBio L1 — Do gk/ 1 — Dun
L <T>EA , 1 <7rc>2A i
2 gk eyx 3 P mzz
1 (7rc>2A 3:|
6 g ey

where «.Ce and «nCrnn have been replaced by D, and
D, respectively.

No interaction between higher order multipole mo-
ments is taken into account in this equation.

The normalized shunt susceptance for the TE;; mode
can now be readily evaluated from the relation

1— Ry, 1— Ry —jR)
14+ Ry, 1+ R+ jRy

(51)

Y =G+ 4B =

atz = 0. (52)

Here we encounter, however, the difficulty to relate
the calculated approximate values for G and B to the
results of the experimental measurements. If we assume
perfectly conducting disks, it is clear that no electro-
magnetic power will be absorbed by the disks. That in
turn means that the disks represent a pure shunt sus-
ceptance in parallel with the characteristic admittance
Y=G =1 of the waveguide. If we calculate G and B from
(52) we obtain

(1 — Ry?) — Ry?
T+ R R
5 —2R¢" '

(1 + R)* + Ro™

(53)

(54)

If a rigorous solution for Ro=Ry4jR,’ could be
found, (53) should then be equal to 1. It seems now a
good approximation to assume that B corresponds to
the measured shunt susceptance as long as G=~1. We
can also plot Ry vs Ry’ from (52) for the case G=1 as
shown in Fig. 3. We obtain

— B2
Rol = 4t B (55)
. 2B
Ry = 1+ B . (56)
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If the theoretical values for Ry’ and Ry’ represent
good approximations, the corresponding point in Fig, 3
should be close to the curve given by (55) and (56). We
could further take the point on the curve which is clos-
est to the calculated value Q and read the value for B
from the graph. This, however, does not necessarily
represent a better approximation than (54).

*D
04 <E
o/v/o
~""g=09
xD o5E
xE /\/\/
Z -03/ Py F x6
2 o] o o7 »x
(2] o~
2 ~ 06 G
3 D c - <F " ‘
- E x x
2 x 05
b} xF «C
= 04 G
Q -
E]
o
+ + +
o] -005 -0 -0 15 -02

RE AL PART OF Ro

Fig. 3—Relation between the real and imaginary part of the reflection
coefficient R, for a lossless shunt admittance in a waveguide as
given by (55) and (56). The calculated points for a disk loaded
waveguide are indicated.

NuMERICAL RESULTS

The preceding analysis will now be applied to the
numerical evaluation of the input susceptance of a disk-
loaded waveguide. Gardner?® has obtained experimental
results for the case of two, six and eight disks with dif-
ferent radii in a transverse plane of the guide. He then
calculated the input susceptance in the first-order ap-
proximation with static and dynamic interaction be-
tween the disks. Unfortunately the seemingly more ac-
curate results for dynamic interaction compared less
favorably with the measurements.

We consider only the case of two disks in a standard
size waveguide as shown in Fig. 4. The shunt suscep-
tance will then be evaluated for three different radii
(@=0.1", 0.125"”, 0.15”") and two different frequencies
(f=9 kmc, 11 kmc). The following cases will now be con-
sidered:

1) No interaction between the disks. All higher order
multipole moments are neglected. First-order ap-
proximation for the dipole moments. The reflec-
tion coefficient is given by

8k%ad 1 /7\?*
ke (Y
3¢dBio 2 \gk

8 R. A. Gardner, “Shunt Susceptance of Planar Arrays of Con-
ducting Disks,” M.S. thesis, Case Inst. of Tech., Cleveland, Ohio,
Sci. Rept. No. 13, AF 19(604)-3887; April, 1960.

(57)
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4)

5)

Ry = —
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Fig. 4—Rectangular waveguide with two circular disks.

Static interaction between the disks. All higher
order multipole moments are neglected. First-
order approximation for dipole moments.

. 8k%a?
J
3cdfB1o

1 1 /7\? 1
T _<ﬁ> #—*ﬁ} ED
1 - aeBCees 2 gk 1 - OémBC‘mm8

C..* and Cnn»® are the static interaction constant
which can be obtained from (34) and (37) by set-
ting k=0.

16 8
al = — ab, B = — — a3

3 3

= polarizabilities calculated by Bethe.

Dynamic interaction in plane wave approxima-
tion between the disks. All higher order multipole
moments are neglected. First-order approximation
for dipole moments.

. 8k%®
] 3Cd,310

1 1 /7\? 1
P — | — (59)
1 — afC. 2 \gk/ 1 — anPCun
where C, and Cpn, are given in (34) and (37).
No interaction between the disks. All higher order
multipole moments are neglected. Third-order ap-
proximation for dipole moments.

A
¢ I 3Cd[’310 “ gk o '

Ayt and A4,.! are given in (21) and (22).
No interaction between the disks. Higher order
multipole moments are considered. Third-order
approximation for multipole moments.

. 8k%?
j -
3cdBro

fa= (B) e 5 () 4
ey gk mz 2 gk cYx
1 /mc\? 1 /mc\?
- 4> Amzm"2 - ——\ A eyxxs . (61)
3 \g 6 \g

The coefficients 4, are given in (21) to (25).

Ry =

(60)
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6) Dynamic interaction in plane wave approxima-
tion between the dipole moments of the disks.
Higher order multipole moments are considered.
Third-order approximation for multipole mo-
ments,

_ 8F%?
J
3cd,810

(e ) i )
1—alCo  \gk/ 1 — anCom 2 \gkt) ™

1<”>24 : 1<TC>2A 3} (62)
3 p Amaz 6 p eyxr .

@, and a,, are given in (41) and (42) for §: =90°.

7) Dynamic interaction in dipole wave approxima-
tion between the dipole moments of the disks.
Higher order multipole moments are considered.
Third-order approximation for the multipole mo-
ments.

0=

. 8k%a?
J
3Cd/810

Aot 7\?  Ap.! 1 /7\2
=) ——+ = —>Aeyzﬁ
1—- D, gt/ 1 — Dupw 2 \gk

1 <7rc>24 \ 1 <7rc>2A 3} (63)
3 p Amzz 6 p eyzx .

D, and D, are defined in (49) and (50).

0= =

08

o7 | J

kc=2.15
kd=192

05

04

03

o2

o.l :
048 05

~kd

055 06 2

(a)

Fig. 5—(a) Input susceptance of a disk loaded rectangular waveguide for different disk radii a. Frequency f=
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Numerical calculations for the input susceptance as
given by (54) have been carried out for the following
values:

¢=0.0114 meter

d=0.0102 meter

£=0.0228 meter

£=0.0102 meter

2 =0.00254, 0.00318, 0.00381 meter

f=9, 11 Ge

k=189, 230 (meter)™?

B10=130, 184 (meter)™!

k., =138 (meter)—,
The interaction constants D,, and D,,» have been calcu-
lated by using a digital computer. In Fig. 5(a) and (b)
the input susceptance B has been plotted as a function
of the important quantity (ka) for the two different fre-
quencies. Each graph shows the seven different theo-

retical approximations listed above. The thicker solid
line represents the experimental results.

B
10
D
094
0.8 | .
5d
@%12@ "
4 |
07t el
o T |
l 9
ke=2.62
0.6 + kd=2.34

05 1

0.4 1

0.3 4

0.2 §

Ol 4 , ,
073 08

(b)

——m

Yore—t
0875 08 kg

9 Ge. (b) Input susceptance of a

disk loaded rectangular waveguide for different disk radii a. Frequency f=11 Ge.
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DrscussioNn AND CONCLUSION

For a detailed discussion of the method which was
used to measure the equivalent input susceptance of the
disks the reader is referred to the original report.t Ex-
treme care was taken in manufacturing the disks and in
placing them at the desired location within the wave-
guide. A polyfoam support of low dielectric constant
(B=1.05), was used and its calculated and measured
equivalent susceptance was subtracted from the final
measurements. The estimated error should not exceed
one or two per cent.

From the few numerical data available (theoretical
and experimental) it is not possible to draw conclusions
which are valid for every general case. It is, however,
clear that the simple dipole approximation of Bethe
gives reliable results only for rather small disk radii of
the order less than v of a wavelength (ke <0.5). It is
interesting to note that the dynamic interaction calcu-
lation C does not improve the result; on the contrary,
the values obtained are much too small. The dynamic
interaction calculation seems to give also a lower value
for the susceptance, if the curves E and F are compared.
Generally it is observed that consideration of static
interaction increases the susceptance, dynamic inter-
action decreases the susceptance, higher order calcula-
tions increase the susceptance, higher order multipole
moments decrease the susceptance, dipole wave inter-
action gives a higher susceptance than plane wave
interaction.

It should be emphasized that all our results are ob-
tained for comparatively short separation distances s in
the order of (ks)~2.5. For other values the remarks
above might not be valid.

Which approximation should be used for each case is
not easy to decide without some more numerical data.
It seems, however, that even for closely spaced disks,
where the spacing is only a few multiples of the disk
radius, it is just as important to obtain a more accurate
representation of the diffraction field for a single disk
as it is to obtain the interaction between the disks.

If only dipole moments in the third-order approxima-
tion are considered D, the value for B turns out to be
too large. Higher order multipoles, however, seem to
give values which are very close to the experimental
results. Interaction calculations between the disks in
the dipole wave approximation G give better results in
all cases compared to the plane wave interaction F.
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However, it is somewhat surprising and paradoxical,
that in some cases they do not seem to give an improve-
ment over cases where no interaction is considered.
This is shown in Fig. 5(b), where the curve E is closer
to the measured points than the curve G. An explana-
tion might be found from Fig. 3 where the results for
the reflection coefficients Ry= R +jR,"" are plotted. As
mentioned before, these points should lie on the solid
curve if the disks are lossless. The distance of the points
from the curve thus gives us a measure of the con-
sistency of our calculations.

From (51) it is clear that the results 4 and B are
purely imaginary and are therefore the least consistent
ones. C is quite consistent but it does not compare very
well with the experimental results in Fig. 5(b). D and
E are comparatively inconsistent, where D does not
agree with experiments while E does so quite well. F
and G are about equally consistent but G compares bet-
ter with the measurements. In terms of over-all ac-
curacy it seems that the most sophisticated calculation
G gives also the best agreement with experiments.

Comparing the different disk radii we can draw the
following conclusions for our disk separation s~2.5/k:

Bethe Theory is applicable for (ka) <0.5
Third-Order Theory is applicable for (ka) <0.9
Higher order multipoles have to be con-

sidered for (ka)>0.6
Static interaction is necessary for (ka) > 0.5
Dynamic interaction in dipole field approxi-

mation is needed for (ka)>0.7.

The dynamic interaction in the plane wave approxima-
tion gives only an improvement if the separation of the
disks is larger than the one considered here, probably
for values of the order of (ks) > 6.

For larger disks higher order calculations would have
to be made and for small spacings the interaction be-
tween higher order multipole moments will become im-
portant.

The calculations as described in this paper can in
principle be extended to achieve any degree of accuracy.
It seems, however, that for values (ka)>1 the calcula-
tions become so laborious as to be impractical. On the
other hand, it would be very desirable to obtain more
numerical data for the region of (ka) <1 and a wider
range of spacings between the disks in order to decide
which approximation is the most suitable for a particu-
lar problem.




