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Electromagnetic Diffraction by a Planar

Array of Circular Disks*

w. H. EGGIMANN~ AND R. E. COLLIN~, SENIOR MEMBER, IRE

Summary—The diffraction of a plane electromagnetic wave by a

planar rectangular array of perfectly conducting circular disks is
considered. The diffracted field is calculated from the induced elec-

tric and magnetic dipole moments and higher-order multipole
moments. Static and dynamic interactions between the induced

dipole moments are being considered, first by using a plane-wave

approximation for the dipole fields (for cases where the separation
of the disks is large compared with the wavelength) and then by cal-
culating the actual fields at each disk. The formulas are applied to
calculate the input susceptance of a disk-loaded rectangular wave-

guide. Satisfactory agreement with experimental results is obtained.

INTRODUCTION

I
N A RECENT PAPERl the electromagnetic dif-

fraction by a perfectly conducting circular disk was

calculated. The induced surface current density

was obtained as a power series in

(ka) (k = 27r/X = wave number, a = disk radius).

These results are now used to calculate the diffraction

by a planar rectangular array of disks. Problems of this

sort are important in the studies of artificial dielectrics

where the molecular dipoles of real dielectrics are re-

placed by conductors distributed regularly or at ran-

dom in a supporting medium. For many cases good ap-

proximate solutions have been found, usually for con-

ductors with dimensions that are very small compared

to the wavelength or for some very simple geometrical

configurations. The case of an array of disks has been

the object of early investigations. In a first approxima-

tion the disks are replaced by the induced electric and

magnetic dipole moments which Bethe obtained during

his studies of the diffraction by small hoIes.2 Later the

so-called static interaction, where phase differences be-

tween the oscillating dipole are neglected, was taken into

account.

Here the formalism of the above-mentioned paperl is

used to calculate the effect of higher order multipole

moments and the dynamic interaction between the

induced dipole moments of an array of circular disks,

where it is recognized that the interaction fields are

dipole fields. The mathematical development has to be
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1 W. H. Eggimann, ‘(Higher order ex-aluation of electromagnetic
diffraction by circular disks, ” IRE TRANS. ON MICROWAVE THEORY
AND TECHNIQUES, vol. MTT-9, pp. 408–418; September, 1961.

2 H. A. Bethe, “Theory of diffraction by small holes, ” Pkys.
Rev., vol. 66, pp. 163–182; October, 1944.

rather sketchy. For more details the reader is referred

to the original reports.3,4

It is desirable to relate the theoretical results to quanti-

ties which can be easily checked experimentally. As for

any approximation, our results hold ord y for certain

ranges of the parameters, in our case for small disks

where ka <1. Free space problems are usually not very

amenable to experimental checks. It is therefore pro-

posed to investigate a waveguide configuration which,

by suitable arrangement, will turn out to be closely re-

lated to the free space problem.5 This will be shown in

the following section.

SHUNT SUSCEPTANCE OF A DISK-LOADED WAVEGUIDE

Consider an arrangement of disks in a transverse

plane of a rectangular waveguide as shown in Fig. 1.

The disks are positioned such that their multiple images

with respect to the guide walls form a planar regular

rectangular array with spacings c and d. Similarly the

TEIO mode corresponds to two symmetrical plane waves

incident at angles 0;= f sin–l A/2g and polarized per-

pendicular to the plane of incidence as seen in Fig. 2.

The reflected field at large distances is a TEIO mode

only, traveling in the negative z direction, if the size of

the guide can be chosen such that all other modes are

cut off. That means that in the free space problem the

disk array represents a perfect partially transparent

reflector.

The reflected field can be calculated from the current

distribution on the disks. The normalized fields for the

TEIO mode are

“0= -~kz’[jg],:or,ol’zco
“o= ‘“[ji+id’’’cos=’)a)a

‘210=-k[jgh;orlol’’’sin( kx)a
(1)

8 W. H. Eggiman:, “Higher Order Evaluation of the Diffraction
of Electromagnetic Fields by Circular Disks, ” Case Inst. of Tech.,
Cleveland, Ohio, Sci. Rept. No. 21, AF 19(604)3887; January, 1961.

4 W. H. Eggimann, “Notes on Input Susceptance of a Disk
Loaded Wavewide. ” Case Inst. of Tech., Cleveland, Ohio, Sci,

e, 1961.
. .. . :guide Image Techniques, ” Case

ia~d~-Ohio, Sci. Rept. No. 19, AF 19(604)3887;

Rept. No. 25, ~F 19(604)3887; Juri
5 R. E. Collin, ‘(A Note on W2W

Inst. of Tech., Clevel
November, 1960.
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Fig. l—Planar array of circular disks in a rectangular
waveguide and their multiple images.
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Fig. 2—l<epresentation of the TEIo mode in a rectaugl]lar waveguide
by two plane waves. The incident angle is given by 0,= sin-l X/2g.

where

kz=:, rlo = jL?lo = (k.z – W)l’2.
~

We have further the orthogonality relation

s
elOXhzlO”~S = 1

s
(2)

where the integration is over the cross section S of the

waveguide.

The normalized transverse field moving in the nega-

tive z direction is

EIO– = mer’oz
(3)

~10– = — ~loerlo’

and in the positive z direction

E1o+ = eloe–rlOz
(4)

Hlo+ = hlOe–rlO”.

The scattered dominant wave is

EIO’ = bloElo–
(5)

HIoS = bloHlo–

where blo is the scattering coefficient. blo can be easily

found by using the Lorentz reciprocity principle.G

1
blo=– —

s
E,oh. JdV.

217
(6)

The integral is taken over the volume V containing

the induced current density.

A similar result holds for bn of the nth scattered mode.

Expansion of the mode E/ about the origin gives

[

d 2&i- d ‘E.h d2Enh

++ %27 +2xy —+y’— 1_l... (7)
.2 dxay dyg ‘r “

This leads to

–2b. = En~. JJdV
v

[s

~E,,+ ~ E,,+

+— xJdV + —“
dx “ v f]ay v

yJdV

1 d’En~

[s

dZE,,+

+~ — x~JdV + 2 —“ sxyJd V
d.xz “ v dxay v

a2E.+
+ ‘—” s]y’JdV +“.”. (8)

dyz v

In the following we consider the relation

s s s
V(4J)dV = (4V”J + JV4)dV = 4Jd S = O (9)

v v v

which holds if the integration is taken over the total cur-

rent distribution, because the component of J nclrmal

to the surface element dS must vanish. Hence

s
J. V@dV = – s~V .JdV = ja

s
Wdv (10)

v v v

where p, is the electric charge density.

First-Order Approximation

s
JdV = a. sVx. JdV + a, JVy. JdV

v v v

——
[s

a. xp,dV + au s]ypedV jco = jr.oP1 (11)

v v

where P1 is by definition the electric dipole moment.

That gives

–2bn1 = Enh- SJdV = jwEni-. P1. (12)
v

6 R. E. Collin, “Field Theory of Guided Waves, ” McGraw-Hill
Book Co., Inc., New York, N. Y.; 1960.
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where the superscript of the bfll denotes the first-order

approximation.

Secofid- and Thi~d-Order A Pproximation

Using a similar procedure we find for the second- and

third-order approximation

– 2bn2 = jW(–IJoHn+. M + ~VEn+:~’) (13)

where

sM = ~ r X JdV = magnetic dipole moment

electric quadruple moment (15)

P,lks =
s s

r,r,r,pedV = $ (r,Y,J, + r,r,J, + r,r,Jj)dV
J@

electric octupole moment.

The tensor products are defined as follows:

(16)

and similarly for the magnetic moments. It has to be

pointed out that ~ is not the magnetic quadruple mo-

ment. The total scattering coefficient is now

–b. = ~jw[Em+. P1 – poHn+. M1 + ;vEn~: ~z

— @Hn+:~ + @2En+:~3 . . . ]. (17)

Using the theory of images we have an infinite array

of disks and a plane wave incident at angles @i= 90° and

/3; = sin–l X/2g (Fig. 2). The total scattered field is found

by calculating and adding the contributions of the

electric and magnetic dipole moments and multipole

moments of all the disks.

The incident electric field has only a y component

and is given by

E1O!J ‘*” = EO cos (k,x) e–r’o’. (18)

From (5) we obtain for the total scattered field

where the summation is taken over all disks in the wave-

guide cross section and elo is given in (l).

The reflection coefficient for the TEIO mode is then

found from

J%ov’(z = o)
Ro =

E,oui(z = o) = ‘%[jg,2LOr1J’’2 D%.”o ’20)

Using (15) and Eggimann,l we calculate the multipole

moments. We obtain

PU1 = ua3eoEocos (kzak)A ,U1
3

(21)

[
A.U’ = 1 + 1 (ka)z – : sin’8,(ka)’ – j ~ (ka)3

15 6 1
Mzl=–~a8L EO sin (kZ$m,) A~Z1 (22)

jwyo

[
An,’ = ~ 1 – ‘(ka)’ – ‘sin’ O,(ka)’ +j~ (ka)’

2 10 10 1
16 g

P ~zz=——a3 — EO sin (k.&J A ,U~2
3 @’Pa

A :5 (ka)zw.% = —

(23)

Q,. = f djwdh cos (k.xJA~..’ (24)

A mZz 2 = ~ [(2 + sin’ 0,) + ~ (52 – 16 sin’ d, – 3 sin’OJ

. (ka)z – j # (ka)3]

A euxz

[ 13=~1+~ti(l10 – 47sin20J(ka)2 –j~(ka)3 .

Substituting the values for E,O+ and HIo+ from (1)

and (4) and (21) to (25) in (17) and performing the

summation over the disks in the waveguide cross sec-

tion, we obtain for the reflection coefficient

Ro= –j
ZIA’-(;)A.l++(; YA.2

- ‘m.2-w’A.3117re2
—

-( )3g

=R’+jR’f fOrm#l (26)

(nz = number of disks in the x direction)

where g/m and h/m have been replaced by c and d, the

spacings between disks in the x and y directions, respec-

tively.

For the case of a single disk (26) becomes

Ro= –j
E(A@1+%3’4eJ

1TC2
—

()
— A .UZZ2).

Tg
(27)
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In order to obtain a better approximation we now

consider the interactions between the disks, and the

disks and the guide walls. For the case of a free space

array of dipoles this has been done by Collin and Eggi-

mann. 7 They considered an incident plane wave

given by

E~ = E.e-, &z+@lOz).~, (28)

where lzz = k sin tl~, PIO = k cos 0;.

The induced dipole moments have a phase delay in

the x direction given by kZc. Due to the symmetry of

the problem the induced electric dipole moment P has

a y component only. In this case the interaction field at

the center of a disk is found to be

~o
(29)

HZint = CmeYo ~“ + CmmMatOt.
co

The interaction constants C.,, Ce~, C~., and C~~ are

obtained by summing the contributions to the fields

due to all electric and magnetic dipole moments and

are given by

C.e = ~ & ~’ [2(1 + jklz)(mi)’
k m=–w .=–w

– (1 + jkR – k’l?z) (m)’]
e–,hR–ikzm.
—— (30)

R5

(31)

jk m
Cme = ~ =? ~f (1 + jkR) ~ e–i~R–i~zm~ (32)

.’ w .=—m

c ~= ~ ~’ (1+jkR-k’R2) ~e-~hR-,k@c (~~)
~m=— —

. m %=..W

where R = [(mc)z+ (mi)z] 112.

The prime on the summation sign indicates that the

term m = n = O is to be omitted.

These sums can be written in the form of a rapidly

converging series as follows:

[

k,d,
Cee= : 1.2 –

k,&? 3k4d4
—lnkd+

2
~+— 1288-

1 c

P..m – Tm--)1

CA {1 k 4d2
~m=——

2rd
;+; +;(l– 7)+-=

4= +kzln2sink~+~ln —
k’cd 1

-;~qrm+r-m-++=]

(35)

(36)

(37)

where KO and K1 are modified Bessel functions of the

second kind.

‘m’ = (?+kxY-k’
(38)

y = 0.577 = Euler’s constant.

If the disks are sufficiently far apart, i.e., kR>>ll, we

can use a plane wave approximation and calculate the

induced electric and magnetic dipole moment due to

the interaction field. We obtain

Pu = a.eOEuink + CY.inCeOEv’n’ (39)

Mz = amH.int + aminoH.inC. (40)

aein’ and a~ino are the electric and magnetic pola. riza-

bilities for the incident field and are obtained from A ,Ul

and A~,l in (21) and (22).

k3d3--)1
16

(34) a“nc= ; [( )
a’ 1+ ~–~sin’0, (ka)2–j~(ka)3

1
6

8
am’””= —— a3

[ 1
l–~ (2+sin’0,)(ka)2+j ~ (ka)’ .

3

7 R. E. Collin and W. H. Eggimann, “Dynamic interaction fields
in a two. dimensional lattice, ” IRE TRANS. ON MICROWAVE THEORY
AND TECHNIQUES, vol. MTT-9, pp. 110–1 15; iVIarch, 1961.

(41)

(42)
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The electric and magnetic polarizabilities a. and am

for the interaction are obtained from (41) and (42) if we

set 6,= 90°, because the direction of propagation of the

interaction field is parallel to the plane of the disks.

Solving (29), (39) and (40) for the dipole moments

yields

~ = (1 – c%cmm)a!6%oEu’”’ + Cleaminceoc,?lzoIIzin”
u

(1 – a,ce,)(l - amcnm) - CY,amc?,mcme
(1 – CI.C,JCW7L‘n’HZinc + a.inOCImCm.YOEuinC

Mz=—
(1 – aec.e)(l - %cmm)- CYeamc.mc?lk?

In reality aeCe~ and a~C~e are small compared

the other terms so that (43) and (44) reduce to

‘nceo
P. = a“ j&inc

1 – CYec.e

in c

M. = ““
Hain.

1 – CYmcmm “

(43)

(44)

with

(45)

(46)

This means we neglect the interaction between elec-

tric and magnetic dipoles. For small spacings between

the disks the plane wave approximation of the interac-

tion field may be insufficient. In this case it is necessary

to calculate the induced dipole moments on the disk

due to a dipole field. This can be done by using the gen-

eral expressions for the induced current distribution

given by (33) and (34) in Eggimann.l The interaction

can now be expressed by the equations

where

Pud = induced electric dipole moment due to the total

field of all electric dipoles P.,

M,d = induced magnetic dipole moment due to the

total field of all magnetic dipoles m..

The new interaction constants are

D.e = ciOC.~ F ~ ~’
m=—. ?7,=-W

{[

36 36j 10 2j
.— —— —

(kR)’ + (kR)’ – (kR)’ + (kR) 21

[

45 45j 18 3j
—

(kR)’ + ~R~ – ~R~ – (kR)’ 1}
(kmc)’

. ~–flcR-ik.m. (49]

..= a.cm.+ % S ~’D
m=—m,,==--m

{

7 7j 2 i.—— ——
(kR)’ + (kR)’ – (kR)’ – (kR)’ }

. ~—ikR—ik.mc (50)

The summation terms represent corrections to the

plane wave approximation. For large kR and c # O they

are one order smaller than the leading terms CWC.. and

a~C~~, Their numerical computation is difficult because

they converge very slowly if kR is not large. We can

use, however, the same method as was employed for the

evaluation of the interaction constants C.. and C~~. 7

There, a Fourier transform was used to obtain a rapidly

convergent series for the field components, where only

the first terms had to be calculated. Using the foregoing

results, we finally obtain for the reflection

(m#l)

R,= –j
&[l:eiA:)’l ::..

coefficient

(51)

where cGC., and cY~C~~ have been replaced by D,. and

D mm J respectively.

No interaction between higher order multipole mo-

ments is taken into account in this equation.

The normalized shunt susceptance for the TEIO mode

can now be readily evaluated from the relation

l–R, 1 – R,’ – jR;’
Y= G+jB=—=

l+RO 1 + Ro’ + jRo”
at z = O. (52)

Here we encounter, however, the difficulty to relate

the calculated approximate values for G and B to the

results of the experimental measurements. If we assume

perfectly conducting disks, it is clear that no electro-

magnetic power will be absorbed by the disks. That in

turn means that the disks represent a pure shunt sus-

ceptance in parallel with the characteristic admittance

Y= G = 1 of the waveguide. If we calculate G and B from

(52) we obtain

~ = (1 – R,”) – R,’”

(1 + R,’)’ + R,’”
(53)

– 2R:f

B=
(1 + R,’)’ + R,’” “

(54)

If a rigorous solution for R.= Ro’+jRO” could be

found, (53) should then be equal to 1. It seems now a

good approximation to assume that B corresponds to

the measured shunt susceptance as long as Gcxl. We

can also plot Ro’ vs Ro” from (52) for the case G = 1 as

shown in Fig. 3. We obtain

_@
R,’=—

4+B2

2B
R,” = —

4+B~”

(55)

(56)
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If the theoretical values for .&’ and .&” represent

good approximations, the corresponding point in Fig. 3

should ‘be close to the curve given by (55) and (56). We

could further take the point on the curve which is clos-

est to the calculated value Q and read the value for B

from the graph. This, however, does not necessarily

represent a better approximation than (54).

XD
.E

-04, fl

L t
o -005 -o I -o [5 -02

REAL PART OF R
0

Fig. 3—Relation between the real and imag,iuary part of the reflection
coefficient RO for a lossless shunt admittance in a waveguide as
given by (55) and (56). The calculated points for a disk loaded
waveguide are indicated.

NUMERIC.~L RESULTS

The preceding analysis will now be applied to the

numerical evaluation of the input susceptance of a disk-

loaded waveguide. Gardnerg has obtained experimental

results for the case of two, six and eight disks with dif-

ferent radii in a transverse plane of the guide. He then

calculated the input susceptance in the first-order ap-

proximation with static and dynamic interaction be-

tween the disks. Unfortunately the seemingly more ac-

curate results for dynamic interaction compared less

favorably with the measurements.

We consider only the case of two disks in a standard

size waveguide as shown in Fig. 4. The shunt suscep-

tance will then be evaluated for three different radii

(a= O.1”, 0.125”, 0.15”) and two different frequencies

(~= 9 kmc, 11 kmc). The following cases will now be con-

sidered:

1) No interaction between the disks. All lhigher order

Irldtipole moments are neglected. First-order ap-

proximation for the dipole moments. The reflec-

tion coefficient is given by

Ro= –j
E{’-+(;)I “7)

S R. A. Gardner, “Shunt Susceptance of Planar Arrays of Con-
ducting Disks, ” M.S. thesis, Case Inst. of Tech., Cleveland, Ohio,
Sci, Rept. No. 13, AF 19(604)-3887; April, 1960.

‘12izzi
YJ

L— .— -r
9

Fig. 4—Rectangular waveguide with two circular disks.

2) Static interaction between the disks. All higher

order multipole moments are neglected. Fh-st-

order approximation for dipole moments.

8k2a3
Ro= –j—

Wdfilo

“{ 1 17T2-( ) 1

}
(58)

1 – aeBcee’– —2 gk 1 — a!mBc,nm’

C,.’ and C~~” are the static interaction constant

which can be obtained from (34) and (37) by set-

ting k =0.

3)

4)

5)

16 8
~eB = _ U3 ~,B=__a3

3’ 3

= polarizabilities calculated by Bethe.

Dynamic interaction in plane wave ,approxima-

tion between the disks. All higher order multipole

moments are neglected. First-order approximation

for dipole moments.

8kza3
RO= –j—

3cd@~o

“{ 1 1 7r2 1

-( ) }
(59)

1 – aeBcee– —2 gk 1 — a~BC~~

where C.. and C~~ are given in (34) and (37).

No interaction between the disks. All higher order

multipole moments are neglected. Third-order ap-

proximation for dipole moments.

RO = –j
={AJ-(:Y’’ms’} ’60)

.4,; and Am} are given in (21) and (22).

No interaction between the disks. Higher order

multipole moments are considered. ‘Third-order

approximation for multipole moments.

8kza3
Ro= –j——

3cdpul

The coefficients .4,,,” are given in (21) to (25).
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6)

7)

Dynamic interaction in plane wave approxima-

tion between the dipole moments of the disks.

Higher order multipole moments are considered.

Third-order approximation for multipole mo-

ments.

gh2@8

Ro= –j—
3cd@lo

“{A ,gl (-)7r 2 Am,l 17r2

1 – C&cee– ()
+ — — .4w.’

gk 1 – amCmm 2 gk

17rc2’

()

———

3g -4mJ-x;)Az3} “2)

a. and am are given in (41) and (42) for 6: ~ 90”.

Dynamic interaction in dipole wave approxima-

tion between the dipole moments of ~he disks.

Higher order multipole moments are considered.

Third-order approximation for the multipole mo-

ments.

8kzas
Ro= –j—

3cd~,0

“{1%.+(221:mLm+Hi3AJ
17fc2

— ()-- -’m=’-:(;b-’l “3)3g

D,. and D~~ are defined in (49) and (50).

B

08

07

06

05

04

03

02

0.1

0.4

kc-2.15

kd= 1.92 ///q
(i

#&

I

I

I

I

I

I

(a)

Numerical calculations for the input susceptance as

given by (54) have been carried out for the following

values:

c= O.0114 meter

d= O.0102 meter

g= O.0228 meter

k = 0.0102 meter

a= O.00254, 0.00318, 0.00381 meter

t=9, 11 Gc

k= 189, 230 (meter)-l

BIO= 130, 184 (meter)-l

ko = 138 (meter)-’.

The interaction constants D.a and D~~ have been calcu-

lated by using a digital computer. In Fig. 5 (a) and (b)

the input susceptance B has been pIotted as a function

of the important quantity (ka) for the two different fre-

quencies. Each graph shows the seven different theo-

retical approximations listed above. The thicker solid

line represents the experimental results.

II

0’

0.[

0.7

0.6

0.5

0.4

0.3

0..2

1<
9

4

kc=2.62

kd.2.34 b
ID

1“4G
/’

/ ,,,/}’
/ /

F

/N

I

o. I I I

0.585,0.6 07 0.73 0.8 o.e75, 0.8 kq

(b)

Fig. 5—(a) Input susceptance of a disk loaded rectangular waveguide for different disk radii a. Frequenc~,~= 9 Gc. (b) Input susceptance of a

disk loaded rectangular waveguide for different disk radii a. Frequency j“= 11 Gc.
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DISCUSSION AND CONCLUSION

For a detailed discussion of the method which was

used to measure the equivalent input susceptance of the

disks the reader is referred to the original report.4 Ex-

treme care was taken in manufacturing the clisks and in

placing them at the desired location within the wave-

guide. A polyfoam support of low dielectric constant

(k= 1.05), was used and its calculated ancl measured

equivalent susceptance was subtracted from the final

measurements. The estimated error should not exceed

one or two per cent.

From the few numerical data available (theoretical

and experimental) it is not possible to draw conclusions

which are valid for every general case. It is, however,

clear that the simple dipole approximation of Bethe

gives reliable results only for rather small disk radii of

the order less than TIT of a wavelength (ka.< 0.5). It is

interesting to note that the dynamic interaction calcu-

lation C does not improve the result; on the contrary,

the values obtained are much too small. The dynamic

interaction calculation seems to give also a lower value

for the susceptance, if the curves E and F are compared.

Generally it is observed that consideration of static

interaction increases the susceptance, dynamic inter-

action clecreases the susceptance, higher orcler calcula-

tions increase the susceptance, higher order multipole

moments decrease the susceptance, dipole wave inter-

action gives a higher susceptance than plane wave

interaction.

It should be emphasized that all our results are ob-

tained for comparatively short separation distances s in

the order of (ks)=2. 5. For other values the remarks

above might not be valid.

Which approximation should be used for each case is

not easy to decide without some more numerical data.

It seems, however, that even for closely spaced disks,

where the spacing is only a few multiples of the disk

radius, it is just as important to obtain a mclre accurate

representation of the diffraction field for a single disk

as it is to obtain the interaction between the disks.

If on] y dipole moments in the third-order approxima-

tion are considered D, the value for B turns out to be

too large. Higher order multiples, however, seem to

give values which are very close to the experimental

results. Interaction calculations between the disks in

the dipole wave approximation G give better results in

all cases compared to the plane wave interaction F.

However, it is somewhat surprising and paradoxical,

that in some cases they do not seem to give an improve-

ment over cases where no interaction is considered.

This is shown in Fig. 5 (b), where the curve E is closer

to the measured points than the curve G. An exclama-

tion might be found from Fig. 3 where the results for

the reflection coefficients R~ = Ro’ +jRO” are ]plotted, As

mentioned before, these points should lie o n the solid

curve if the disks are Iossless. The distance of the pc~ints

from the curve thus gives us a measure of the con-

sistency of our calculations.

From (51) it is clear that the results AI and B are

purely imaginary and are therefore the least consistent

ones. C is quite consistent but it does not compare very

well with the experimental results in Fig. 5 (b). D and

E are comparatively inconsistent, where D does not

agree with experiments while E does so quite welll. F

and G are about equally consistent but G compares bet-

ter with the measurements. In terms of over-all ac-

curacy it seems that the most sophisticated calculation

G gives also the best agreement with experiments.

Comparing the different disk radii we can draw the

following conclusions for our disk separation s~2.!i/k:

Bethe Theory is applicable for (ka) <’0.5

Third-Order Theory is applicable for (ka) <0.9

Higher order multiples have to be con-

sidered for (ka) >0.6

Static interaction is necessary for (ka) >0.5

Dynamic interaction in dipole field approxi-

mation is needed for (ka) >0.7.

The dynamic interaction in the plane wave approxi ma-

tion gives on~y an improvement if the separation of the

disks is larger than the one considered here, probably

for values of the order of (ks) >6.

For larger disks higher order calculations would have

to be made and for small spacings the interaction be-

tween higher order multipole moments will become im-

portant.

The calculations as described in this paper can in

principle be extended to achieve any degree of accuracy.

It seems, however, that for values (ka) >1 the calcula-

tions become so laborious as to be impractical. On the

other hand, it would be very desirable to obtain more

numerical data for the region of (ka) <1 and a wider

range of spacings between the disks in order to decide

which approximation is the most suitable for a particu-

lar problem.


